教育背景:
2015-2020 澳大利亚麦考瑞大学 经济学博士
2013-2015 澳大利亚麦考瑞大学 经济学硕士
2010-2012 澳大利亚悉尼大学 金融学学士
工作经历:
2020 – 浙江工商大学国际商学院 助理教授
所授课程:
初级宏观经济学、中级宏观经济学、货币经济学、中级计量经济学、高级计量经济学、时间序列分析, Big Data Applications
研究领域:
经济预测,宏观计量,大数据计量经济学
研究成果:
1.Heaton, C., Ponomareva, N., Zhang, Q. (2019). Forecasting models for the Chinese macroeconomy: the simpler the better?. Empirical Economics, 1-29. (SSCI Q2, ABS2)
在研论文:
1.Forecasting Models for the Chinese Macroeconomy in a Data-rich Environment: Evidence from Large Dimensional Approximate Factor Models with Mixed-frequency data;一作
2.Nowcasting Chinese GDP in a Data-rich Environment: Lessons from Machine Learning Algorithms;一作
3.More is better or in waste? A resource allocation measure of government grants for facilitating firm innovations;二作
4.Forecasting Chinese GDP: the Benefits of Machine Learning Algorithms;一作
5.Can network communities structure predict mutual fund performance; 一作
6.Portfolio Management with Adaptive Multi-Armed Bandit Algorithm enhanced by Genetic Algorithm;一作